gambit软件用于耐高温轴流风机模型建立和网格生成。考虑到耐高温轴流风机叶片翼型结构的复杂性和顶部区域的三维流动,首先选择三角形网格划分叶片顶部,并利用尺寸函数对网格进行细化,以---耐高温轴流风机网格。其它区域的网格划分为动叶区域网格作为参考,采用结构化/非结构化混合网格。为了---精度和网格独立性,对原风机在216万、245万、286万和337万网格条件下的性能进行了模拟。结果表明,随着网格数量的增加,总压和效率逐渐接近样本值,337万和286万网格的总压和效率偏差分别为0.085%和0.024%。综合模拟精度和网格数确定了所用的总网格数。这个数字是286万。其中动叶面积198万片,集热器、导叶面积和扩压管网格数分别为30万片、26万片和32万片。在模拟叶尖间隙形状的变化之前,耐高温的轴流风机,将原始风扇的模拟结果与参考文献中的耐高温轴流风机性能进行了比较。结果表明,在33.31-46.63m3_s-1流量范围内,总压和效率的平均相对误差分别为3.0%和1.5%,表明结果能够反映风机的实际性能。
耐高温轴流风机在实际应用过程中,叶片型线的优化可能面临一个问题。不同叶片高度的不同进水条件导致叶片型线优化结果差异过大,难以对叶片型线进行过度优化。为此,本文提出了多截面轮廓协同优化的方法,建立了轮廓几何与轮廓目标函数之间的关系,使得到的轮廓满足三维实际要求。在优化过程中,耐高温轴流风机,增加了叶片型线的几何分析和设计点气流角的调整模块,以---获得的叶片型线能达到与原型相同的气流转向能力。同时,耐高温轴流风机设计点的气动性能满足一定要求,否则,可以以罚函数的形式尽快完成叶型的气动分析,提高优化过程的快速性。在确定优化目标时,综合考虑了设计点的性能和非设计条件,耐高温轴流风机对有效范围内的剖面性能进行了研究。目标函数括号中的项为设计点损失,第二项为有效流入流角范围,边界为设计点损失的1.5倍,第三项为失速裕度,第四项为有效流入流角范围内的平均损失,第五项为平均损失差的方差。有效流入角范围内的分布。分子是分析叶片外形的气动性能,分母是原型参考值。耐高温轴流风机利用加权因子w对截面之间的关系进行加权,不锈钢耐高温轴流风机,设置目标函数,得到损失小、失速裕度高的多截面s1剖面。各参数的---和各截面的---系数决定了优化目标是集中于中间截面的性能,以及中间截面的损失和末端截面的失速裕度。
本文以方案中耐高温轴流风机的定子叶片为例进行了详细设计,优化了s1流面叶型,耐高温轴流风机采用三维叶片技术---了定子叶栅内的流动。通过三维数值模拟,对s2流面设计中的损失和滞后角模型进行了标定,为叶片三维建模提供了依据。通过与初步三维设计结果的比较,两种设计方案的气动参数径向分布一致,证实了耐高温轴流风机设计过程中s2流面设计的准确性和---性。由于叶尖泄漏流的存在,叶尖压力比与气流角(图中灰色虚拟线圈所示的面积)之间存在一定的偏差,但通过三---fd的修正,s2的设计趋势预测了叶尖泄漏流对气动参数径向分布的影响;bec在高负荷下,定子根部出现了气流分离现象,导致了出口气流角和s2设置的初步三维设计。预测结果略有不同(图中橙色虚线圈所示的区域)。耐高温轴流风机利用一条非均匀有理b-sline曲线来描述由四个控制点(红点)控制的曲线,包括前缘点和后缘点。叶片体由四条非均匀曲面、两个吸力面和两个压力面组成,同时与较大切圆(灰圆)和前缘后缘椭圆弧相切。利用mit mises程序对s1型拖缆叶片进行了流场分析。采用b-l(baldwin-lomax)湍流模型和ags(abu-ghamman-shaw)旁路过渡模型描述了过渡过程。
耐高温轴流风机-不锈钢耐高温轴流风机-山东冠熙(商家)由山东冠熙设备有限公司提供。行路致远,---。山东冠熙设备有限公司致力成为与您共赢、共生、共同前行的---,更矢志成为风机、排风设备具有竞争力的企业,与您一起飞跃,共同成功!同时本公司还是从事除尘风机,除尘设备风机,除尘器风机的厂家,欢迎来电咨询。
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz266778.zhaoshang100.com/zhaoshang/263823838.html
关键词: